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Abstract

Radio propagation tools are needed to help operators to find the best setting
of their network, including but not limited to access points positioning, radi-
ated power optimization, and channel selection. Hence, different approaches
proposed in the literature deal with this issue. Empirical models suffer from an
unacceptable lack of accuracy while deterministic models have to cope with ex-
ponential computational complexity. Geometric models like ray tracing [1], [2]
have been extensively developed as they offer a good trade-off between com-
putational load and accuracy but they fail in simulating properly severe envi-
ronments where multiple diffractions and numerous reflections hold. Second,
more accurate methods based on the resolution of the Maxwells equations have
been implemented [3], [4] but they suffer from a high computational load. The
Multi-Resolution Frequency Domain Partial Flows (MR-FDPF) approach [5]
was proposed to fill in the gap by developing a multi-resolution preprocessing
for the frequency domain Transmission-Line Modeling (TLM) approach.

The objective of this document is to present the results related to further
development and optimization of the MR-FDPF method. Two feasibility studies
that have been recently conducted are reported here. First, the possibility
of applying the MR-FDPF approach to simulating the Orthogonal Frequency-
Division Multiplexing (OFDM) and the multiple-input multiple-output (MIMO)
systems has been examined. In the second feasibility study, we have considered
the application of the multi-resolution frequency-domain (MR-FD) approach to
the TLM method in order to efficiently simulate the radio wave propagation in
3D indoor environments.



1 Introduction

As an introduction, we provide the necessary background on the MR-FDPF
approach. The early version of the MR-FDPF method has been derived for
indoor like environments [6,7] but we also proved in [8] that it can be extended
is some cases to large urban scales, if a fake simulation frequency is used. From
our opinion however, the major interest of the method is when hard propagation
conditions occur such as in Indoor. As described in an associated paper [9], we
guess that coupling MR-FDPF with a ray-tracer is the most promising issue for
large scale simulations.

The initial ParFlow method relies on a TLM like formalism [10]. Flows are
defined on edges between nodes in a regular grid. The waves propagate along
the edges and transmissions and reflections are tuned with linear equations that
are associated with each node. From a general point of view, this system can
be expressed under a general matrix equation:

F (t+ dt) = W · F (t) + S(t) (1)

where F(t) is a state vector that contains all propagating flows on the edges,
and S(t) is the source vector. The matrix M is the transmission matrix. In the
frequency domain, the steady-state problem turns into a linear system according
to:

(Id −W ) · F = S (2)

where Id refers to the identity matrix, and F to the harmonic flows vector.
We showed previously how this system can be solved in a recursive manner,
exploiting a recursive dividing procedure as represented in Fig.1. In practice,

Figure 1: father and children node flows are related with linear operations in
steady-state

MR-FDPF approach runs in two steps:

• During the first step, ’vertical’ propagation matrices are recursively com-
puted. These matrices allow to update boundary flows from children nodes
to father and inversely. The computational cost of this part is the highest
part and is in O(n3) [6] but the interesting property is that this prepro-
cessing is node once whatever the source position. This computational
complexity order is further identical to that of computing the coverage of
one source with a time domain implementation.

• During the second step, the propagation is performed ’vertically’ in the
multi-resolution structure. This phase exhibits the advantages of the
method: the computational load is only in O(n2) per source and the exact
steady-state result is obtained while all propagation paths are accounted
for. In addition, the descending propagation process can be stopped at a
certain block size, and statistic parameters can be estimated from inward
flows as illustrated in Fig.2.
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Figure 2: This figure represents a block with inward flows from which local
statistics can be derived.

2 On Simulating Propagation for OFDM/MIMO
Systems with the MR-FDPF Model

Last years, a technological shift in wireless communications has been observed.
After few years with a major interest on direct spreading and CDMA based radio
access technologies, OFDMA and MIMO are the two key technologies exploited
everywhere especially in Indoor like environments [11]. The former successfully
exploits frequency diversity while the later exploits spatial diversity. These two
technologies all together allow approaching the Shannon’s capacity limit, even
in strong fading conditions. However, the practical capacity of these networks
is not known yet for two main reasons: First, the optimal bound can be ap-
proximated only if the transmitter exploits a feedback channel to obtain good
channel state information . Second, as wireless networks are densely deployed,
interference plays a crucial role. Predicting and managing interference locally
while achieving a global optimization is still an open problem [12–14]. Sim-
ulations and models are very important to validate distributed algorithms for
resource allocation, but classical signal strength predictions are not sufficient.
A system level simulation is much more complex because some signal features
are needed. This question arises especially when MIMO and OFDM are used
because they require a very fine resolution in space and frequency domains re-
spectively. It is obviously impossible to derive an exact determinist approach as
many uncertainties are present in complex environments. It is therefore more
significant to predict some statistical parameters in addition to the classical
signal strength. Practically speaking, frequency, spatial and time statistics are
needed. Concerning OFDM, the bandwidth is divided in several sub-channels,
each one having its own channel response hi. To evaluate OFDM transmission
performance, three kinds of information are mandatory: (i) the average chan-
nel gain, (ii) the channel statistics, and (iii) the sub-channels intercorrelation.
Average channel gains are predictable with classical simulation approaches but
the channel statistics are more difficult to obtain. The objective is for instance
to determine the Rice parameter (if the channel is Ricean). This problem was

2



investigated in [15]. However the extension to the case of wideband systems
may generate a high computational load. Concerning MIMO, the system level
performance still relies on predicting the same three components. But the chan-
nels are now spatially distributed. A deterministic simulation cannot predict
accurately the difference between two antennas separated from only few cen-
timeters. Still, a statistical approach is preferred to derive an estimation of the
inter-channel correlation strength.

As detailed in [6], the MR-FDPF approach was designed for simulating radio
coverage maps from steady-state simulations. At a first glance, this approach
seems adequate neither for wideband systems nor for MIMO systems. Albeit,
we will discuss in the following how this method can be adapted to this context.
Further, some specific features of MR-FDPF reveal to be even very powerful.

2.1 Statistic estimations

The MR-FDPF method provides a sub-wavelength resolution. The simulations
are extremely fine but strictly not exact since many artifacts in the real world
are not taken into account and affect the exact value of the predicted field. Such
a fine estimation is however very interesting to estimate local statistics because
it provides a possible picture of what the field could be in any area. For example,
we presented in [15], a study on signal strength statistics in some blocks and
comparison with measurements exhibited a good agreement. The principle was
to measure signal strength variations in a free-space block as represented in
Fig.2. From a given block, for which the inward flows have been estimated from
the rest of the environment, we can proceed to a local analysis of the incoming
flows because they are directly related to the fied values inside the block. In a
block, the incoming flows allow to characterize the complete field inside.

Ψ = Wd · Fin (3)

where Fin is the vector of incoming flows, Ψ the vector field containing all
field in the block and Wd is the downward matrix. Thus, the field values are
obtained by linear combinations of the incoming flows. In a block, the first
meaningful parameter is the average SNR, proportional to the average received
power Γ̄ = ⟨|Ψ|2⟩ easily derived as:

Γ̄ =
1

Nx ·Ny
F⊥
in ·W⊥

d ·Wd · Fin (4)

where Nx and Ny are the block dimensions. Let be considered the standard
value decomposition (SVD) Wd = U⊥ΣV where U and V are unitary matrices
and Σ is a diagonal matrix. Note that we have also W⊥

d Wd = V ⊥ · Λ · V ,
wigth Λ = Σ⊥ · Σ. Then, the inward flows can be projected in the eigenspace
Gin = V · Fin leading to a very efficient computation of the average power in a
block:

Γ̄ =
1

Nx ·Ny
G⊥

in · Λ ·Gin (5)

The SVD decomposition is also very interesting to determine the main mode of
the block, i.e. the inward flows that penetrate the most efficiently in the block.
Indeed, the inward flow vector aligned to the highest singular value corresponds
to the most efficient solution. However, the SVD decomposition cannot be used
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directly for computing higher order moments and the mean amplitude field.
In [15], we explained how the fading strength can be estimated with the k
parameter from the first and second moments of the envelope distribution. The
envelope first moment A is given by:

Ā =
1

Nx ·Ny

∑
j

|Ψ(j)| = 1

Nx ·Ny

∑
j

|uj · Σ ·Gin| (6)

where ui is the i
th eigen vector of U . Then, according to [15] the fading param-

eter is estimated with:

k =

√
1− Γ−Ā2

Γ2

1−
√
1− Γ−Ā2

Γ2

(7)

2.2 MIMO channel predictions

MIMO systems are now very usual in high rate wireless communications [11,
16]. They proved being very efficient in many context especially in Indoor like
environment as they increase the diversity degree of radio links. However, the
MIMO gain depends on the fading strength and inter-channel correlation [17].
The fading strength of each channel can be estimated as described above, while
the intercorrelation can be characterized with the intercorrelation matrix defined
as:

Rhh = E⟨h.h⊥⟩ (8)

where h is the steady-state channel vector. Predicting this correlation is a hard
issue in simulation as wide and short scale phenomnon have to be considered
simultaneously because the different antennas are put together in a very close
space. we know discuss how MR-FDP offers a good framework for such task.

2.2.1 Integration in MR-FDPF

To obtain a simple but efficient approach we use the matricial nature of the
MR-FDPF engine. Let a transmitter be located in a block Bs and a receiver in
a boc Br. In MR-FDPF, directive radiation patterns can be generated with a
set of multiple point source fitting with a reference radiation pattern r(θ) [18]:

r(θ) =
∑
k∈Bs

sk · e−jβδ(k,θ) (9)

where sk; k ∈ Bs correspond to the complex values of the equivalent sources
in the kth point in Bs. Then, the source beamforming vector Vb(s) = {sk; k ∈
Bs} is derived from the discretized radiation pattern Zθ in association with a
smoothing constraint represented by a matrix Sm, leading to :

Vb(s) =
H⊥

H⊥H + µSm
Zθ (10)

Whatever the radiation pattern, the same radiated field can be also obtained
from the boundary outgoing flows of Bs, noted Fout(s) and defined by :

Fout(s) = Wu · Vb(s) · S0 (11)
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where Wu is the reverse matrix of Wd and S0 is the complex coefficient of the
source.

Let us now switch to the receiver block. Thanks to the reciprocity theorem,
the beamforming vector in reception can be derived in a similar way, allowing to
express the received field by using the beamforming vector (10) of the receiving
antenna:

Ψ = Vb(r)
⊥ ·Ψ(d) (12)

where Ψ(d) is the field vector in the block B. As above, we can also simplify the
computation by exploiting the linear relation between boundary incoming flows
and filed values leading to:

Ψ = Vb(r)
⊥ ·Wd · Fin(d) (13)

Then, MIMO simulations can be derived by exploiting (11) and (13) and
defining different beamforming vectors for transmission and reception VS =
{Vb1(s), Vb2(s), . . . , VbN (s)} and VR = {Vb1(r), Vb2(r), . . . , VbN (r)} respectively.
To compute the correlation matrix with (8), the expectation requires different
realization. We propose to use a wide set of beamforming antennas, and the
expectation can be performed over random selections of antennas in these sets.
To avoid a high increase of the computational load, each outgoing flow from s,
fk(s) is propagated solely in the multi-resolution structure to obtain the incom-
ing flows in the destination block. Then, the linear relationship between the
source and destination flows are obtained by the propagation matrix WP (s, d)
which relates each source flow to each destination flow:

Fin(d) = WP (s, d) · Fout(s) (14)

Therefore, the computational complexity of this approach is independent on the
beamforming vectors set, but only proportional to the source block size. This
approach allows to simulate partially correlated MIMO channels that take into
account the real environment.

2.3 Wideband predictions

2.3.1 Wideband characteristics

In, OFDMA, the bandwidth is subdivided into sub-channels [13, 19]. The fad-
ing in each sub-channel is supposed flat and therefore the carrier spacing rep-
resents the maximal frequency resolution required for measuring the frequency
response. In practice however, this resolution is often much fine than the ex-
perimental frequency correlation, and in practice, several adjacent channels are
affected with a correlated fading. In 802.11a for instance, the channel width of
20MHz is divided into 52 sub-channels spacing with a carrier spacing equal to
312.5kHz. Full resolution frequency response estimation would require 52 sam-
ples. The optimal frequency resolution can be also estimated from the channel
time spreading with ∆f < 1/Ts where Ts is the channel time spreading. In usual
Indoor environments, time spreading is in the order of few hundred nanoseconds
around 2.4GHz. This led us considering a frequency resolution of 1MHz. A full
bandwidth estimation of the frequency response thus needs about 20 samples
in the frequency domain.

5



From such simulation, we need a statistical estimation of the channel char-
acteristics. The fading strength is still important for each sub-channel, but the
frequency channels inter-correlation is of primary importance. Let us note hj ,
the channel associated with carrier j,and h = [hj ]

t, the channel vector. The
inter-correlation can be represented with the correlation matrix defined in (8),
where the channel coefficients hi now correspond to the frequency carriers.

2.3.2 Implementation in MR-FDPF

Wideband simulation is a very challenging issue for MR-FDPF since this ap-
proach is based on a steady-state study. Therefore, the complete propagation
mechanism detailed in section II should be done several times. The main draw-
back of this approach is that the high computational load of the pre-processing
phase is repeated as many times as the number of independent carriers. There-
fore, the main limit for this wideband approach is related to the need of de-
veloping the whole preprocessing for each carrier frequency. This generates a
large computational overload but also a large increase of memory resource needs,
since all vertical propagation matrices have to be stored and maintained in the
random access memory. if the bandwidth is very small compared to the carrier
frequency, an approximated computation may appear efficient. Let us note the
solution at the central frequency:

F (f0) = (Id −W (f0))
−1 · S (15)

where W (f0) is the propagation matrix, noted W0 in the following. The same
expression can be derived for another frequency f0 +∆f according to:

F (f0 +∆f) = (Id −W (f0 +∆f))
−1 · S (16)

Note that W (f0 + ∆f) = e(−j2π∆f∆t)W (f0). The time interval ∆t is equal to
dr/(

√
2c) where dr denotes the distance between the neighboring nodes and c

is the speed of light. We can rewrite (16) as:

F (f0 + δf ) =
(
Id −W (f0) +W (f0)− e−j2π∆f∆tW (f0)

)−1 · S (17)

Now, introducing F (f0) into (17) provides:

F (f0 + δf ) =
(
Id − (Id−W (f0))

−1 ·Wδf

)−1 · F (f0) (18)

where Wδf = (e−j2π∆f∆t − 1) ·W (f0). Using the Neumann series we write:

F (f0 + δf ) =
(
Id + (Id−W (f0))

−1 ·Wδf+(
(Id−W (f0))

−1 ·Wδf

)2
+ . . .

)
· F (f0)

(19)

At first order, one obtain:

F (f0 + δf ) ≈ F (f0) + F (1)(δf) (20)

with
F (1)(δf) = (Id−W (f0))

−1 ·Wδf · F (f0) (21)
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This approach is very promising as it becomes possible to compute and keep
in memory the matrices computed for a unique frequency. Further, the com-
putational overload for the propagation phase is acceptable. The solution flows
at f0 are used as sources, then propagated locally to their first neighbors with
Wδf and finally propagated vertically in the multi-resolution structure over the
whole space. If the first order approximation appears not sufficient, a second
order approximation can be assessed by adding a third term equal to

F (2)(δf) = (Id−W (f0))
−1 ·Wδf · F (1)(δf) (22)

which can be generalized to higher order terms:

F (n+1)(δf) = (Id−W (f0))
−1 ·Wδf · F (n)(δf) (23)

At each step, the computational cost is constant.

3 The MR-FD Implementation of the TLMMethod
for Simulating Radio Wave Propagation in 3D
Space

The MR-FD ParFlow (MR-FDPF) algorithm has proved to be a computation-
ally efficient method for simulating radio wave propagation in 2D indoor envi-
ronments [5]. The MR-FDPF method is based on the Lattice-Boltzmann (LB)
approach formulated, e.g., in [20]. In the LB model for simulating wave prop-
agation in 2D space, each point of the lattice is represented by the scattering
matrix. Similar representation of the propagation medium, i.e., by means of
the scattering matrix defined for each node of the mesh, can be found in the
well-known TLM method see, e.g., [21]. In contrast to the LB approach, which
cannot be readily extended to simulate wave propagation in 3D space, the 3D
TLM method is available. Thus, it is of interest to investigate if the MR-FD
implementation of the 3D TLM method can be found. If such implementation,
which in the following will be referred as 3D MR-FDTLM, exists, then its com-
putational efficiency can be compared to that of a more traditional time-domain
realizations of the 3D TLM method.

3.1 The 3D TLM Symmetrical Super-Condensed Node

In the TLM method, the wave propagation environment is modeled as an ag-
gregation of transmission lines interconnected at nodes. In 3D space, the nodes
are constructed by interconnecting 12 transmission lines and up to 6 stubs [22].
The stubs are introduced into the nodes to allow modeling of inhomogeneous
propagation media on a graded mesh.

However, it has been demonstrated in [22] that the presence of the stubs in
the nodes can be totally avoided. The nodes constructed by interconnecting only
the transmission lines are called symmetrical supper-condensed nodes (SSCNs).
In the rest of this section, we briefly describe some of the important features of
the SSCNs. A more detailed description of the SSCNs can be found in [22].
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3.1.1 Scattering Matrix

Below, the incident and reflected voltage pulses traveling along a particular
transmission line are denoted by the superscripts i and r, respectively. The
scattering equation reads as

vr = Svi (24)

where vi = [viynxv
i
znxv

i
xnyv

i
znyv

i
ynzv

i
xnzv

i
ypzv

i
zpyv

i
zpxv

i
xpzv

i
xpyv

i
ypx]

T and vr =

[vrynxv
r
znxv

r
xnyv

r
znyv

r
ynzv

r
xnzv

r
ypzv

r
zpyv

r
zpxv

r
xpzv

r
xpyv

r
ypx]

T (see Fig. 3).
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Figure 3: The 3D TLM symmetrical super-condensed node.

The scattering matrix of the SSCN is given by

S =



ayx byx dyx 0 0 0 0 0 byx 0 −dyx cyx
bzx azx 0 0 0 dzx 0 0 czx −dzx 0 bzx
dxy 0 axy bxy 0 0 0 bxy 0 0 cxy −dxy
0 0 bzy azy dzy 0 −dzy czy 0 0 bzy 0
0 0 0 dyz ayz byz cyz −dyz 0 byz 0 0
0 dxz 0 0 bxz axz bxz 0 −dxz cxz 0 0
0 0 0 −dyz cyz byz ayz dyz 0 byz 0 0
0 0 bzy czy −dzy 0 dzy azy 0 0 bzy 0
bzx czx 0 0 0 −dzx 0 0 azx dzx 0 bzx
0 −dxz 0 0 bxz cxz bxz 0 dxz axz 0 0

−dxy 0 cxy bxy 0 0 0 bxy 0 0 axy dxy
cyx byx −dyx 0 0 0 0 0 byx 0 dyx ayx


(25)
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where

aij = Qj − bij − dij

bij = QjĈkj

cij = Qj − bij + dij − 1

dij = PkL̂ij (26)

and

Ĉkj =
Ykj

Yij + Ykj
=

Zij

Zij + Zkj

L̂ij =
Zij

Zij + Zji

Qj =

(
1 +

Gej

2(Yij + Ykj)

)−1

Pk =

(
1 +

Rmk

2(Zij + Zji)

)−1

. (27)

For a uniform mesh, i.e., △x = △y = △z = △l, and for isotropic media, the
line impedances are defined in [22] according to

Zxy = Zyz = Zzx = Zp =
(√

εrµr ∓
√

εrµr − 1
)√

µ

ε

Zzy = Zxz = Zyx = Zn =
(√

εrµr ±
√

εrµr − 1
)√

µ

ε
(28)

where both signs are meaningful and either solution, i.e., corresponding to either
upper + or −, can be used.

Note that in Eq. (27), the parameters Gej and Rmj signify, respectively, the
electrical and magnetic losses, and are defined as

Gej = σe△l

Rmj = σm△l (29)

where σe and σm are the electric and magnetic conductivities, respectively.
Due to the fact that the line impedance experiences a discontinuity at the

interfaces between two nodes belonging to two different media, the partial re-
flections from the junction have to be taken into account while calculating the
results of the scattering at the nodes.

3.1.2 Output

The components of the electric and the magnetic fields at each node can be
calculated as follows

Ej = −Vj/△l

Hk = Ik/△l (30)
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where

Vj = 2
Yij(v

i
inj + viipj) + Ykj(v

i
knj + vikpj)

2Yij + 2Ykj +Gej

Ik = 2
viipj − viinj + vijni − vijpi

2Zij + 2Zji +Rmk
. (31)

3.1.3 Excitation

To inject the electrical field component Ej into the mesh, the following voltage
pulses need to be generated

viinj = viipj =
−Ej△l

8

2Yij + 2Ykj +Gej

Yij

viknj = vikpj =
−Ej△l

8

2Yij + 2Ykj +Gej

Ykj
. (32)

Similarly, for injecting the magnetic field component Hk, the following volt-
age pulses are injected

viipj = −viinj = vijni = −vijpi =
Hk△l

8
(2Zij + 2Zji +Rmk). (33)

3.1.4 Computational Complexity

According to [22], modeling of lossy anisotropic propagation media requires 48
additions/subtractions and 6 multiplications per SSCN node per time step.

3.2 The MR-FDTLM Implementation

In the previous section, the properties of the SSCN developed in [22] have been
summarized. The choice of the SSCN is mainly dictated by the absence of stubs,
which means that the size of the scattering matrix can be noticeably reduced
compared to the stub-loaded symmetrical condensed nodes (SCNs) and the
hybrid nodes [22].

3.2.1 Scattering equation

Perhaps, the only impediment that prevents a direct application of the MR-
FD approach to the TLM method is the reflections/transmissions happening at
the interfaces between different node regions, i.e., at the boundaries between
different propagation media. As it is shown below, this impediment can be
removed.

The state-space representation of the scattering equation (24) can be written
as

x[(n+ 1)△t] = Rpx[n△t] + Spvi[n△t]

vr[n△t] = Tpx[n△t] + si[n△t]. (34)

Here, the vector si[n△t] = [siynxs
i
znxs

i
xnys

i
znys

i
ynzs

i
xnzs

i
ypzs

i
zpys

i
zpxs

i
xpzs

i
xpys

i
ypx]

T

denotes the excitation signal associated with a source. The elements of the vec-
tor si are calculated according to (32) or/and (33) (see Subsection ??). The
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vectors vi, vr, and the scattering matrix S have been defined in (24). The vec-
tor x represents the state variables. The superscript p shows association with
the node p. Correspondingly, the superscript p+ 1 signifies a node neighboring
the node p on any of its sides. The matrices Rp and Tp are diagonal.

The elements Rp
ij , i, j ∈ {x, y, z}, on the main diagonal of the reflection

matrix Rp are given by

Rp
ij =

Zp+1
ij − Zp

ij

Zp+1
ij + Zp

ij

. (35)

Note that when both nodes p and p + 1 belong to the same medium, the cor-
responding element Rp

ij of the matrix Rp equals zero. Thus, if the node p is
surrounded by the nodes of the same medium, the reflection matrix Rp is zero.

The diagonal elements T p
ij , i, j ∈ {x, y, z}, of the transmission matrix Tp are

defined as

T p
ij =

2Zp
ij

Zp+1
ij + Zp

ij

. (36)

When both nodes p and p + 1 belong to the same medium, the corresponding
element T p

ij of the matrix Tp is 1. Thus, the transmission matrix Tp becomes
the identity matrix I, when the node p is surrounded by the nodes of the same
medium.

By taking the Fourier transform of (34) and after straightforward manipu-
lations we can obtain

vr(f) = Tp
(
I−Rpe−j2πf△t

)−1
e−j2πf△tSpvi(f) + si(f)

= Wp(f)vi(f) + si(f) (37)

which is similar to the frequency domain ParFlow formulation given in [5].

3.2.2 External boundaries

Equation (37) also allows simulating external boundaries of arbitrary reflection
coefficient ρ. For this case, the diagonal elements Rp

ij of the reflection matrix
Rp are calculated according to (see [22])

Rp
ij =

√
µ/ε(1 + ρ)− Zij(1− ρ)√
µ/ε(1 + ρ) + Zij(1− ρ)

. (38)

3.2.3 Composition of scattering blocks

Similar to the scattering equation (37), which describes the relationship between
the the incident and reflected voltages for a single SSCN node, we can write the
scattering equation for the block of nodes A

vr
A = WAv

i
A + siA. (39)

where the excitation signals aggregated in the vector siA correspond to all sources
located inside the block A. Although omitted for simplifying the notation in
(39), the dependence on frequency is understood.
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Suppose the block A and the block B are connected by k lines. Then, the
scattering equations (39) can be written for the blocks A and B as follows (see
also [23])[

WA11 WA12

WA21 WA22

] [
vi
A1

vi
A2

]
+

[
siA1

siA2

]
=

[
vr
A1

vr
A2

]
,

} NA − k
} k[

WB11 WB12

WB21
WB22

] [
vi
B1

vi
B2

]
+

[
siB1

siB2

]
=

[
vr
B1

vr
B2

]
,

} NB − k
} k

(40)

where the subvectors vi
A2

, vr
A2

, vi
B2

, and vr
B2

, which correspond to the k lines
connecting the blocks A and B, are related as

vi
A2

= vr
B2

vr
A2

= vi
B2

. (41)

Note that in general, the size NA of the scattering matrix WA can be different
from the size NB of the scattering matrix WB . Using (41), we obtained from
(40)

WA22v
i
A2

− vi
B2

= −WA21v
i
A1

− siA2

vi
A2

−WB22v
i
B2

= −WB21v
i
B1

− siB2
(42)

and consequently

vi
A2

= (I−WB22WA22)
−1 (

WB21v
i
B1

+WB22WA21v
i
A1

)
+

+ (I−WB22WA22)
−1 (

siB2
+WB22s

i
A2

)
vi
B2

= (I−WA22WB22)
−1 (

WA21v
i
A1

+WA22WB21v
i
B1

)
+

+ (I−WA22WB22)
−1 (

siA2
+WA22s

i
B2

)
. (43)

The scattering equation for the combined block AB can now be determined
by excluding the subvectors vi

A2
, vr

A2
, vi

B2
, and vr

B2
from the consideration [23][

WAB11 WAB12

WAB21 WAB22

] [
vi
A1

vi
B1

]
+ siAB =

[
vr
A1

vr
B1

]
,

} NA − k
} NB − k

(44)

where

WAB11 = WA11 +WA12 (I−WB22WA22)
−1

WB22WA21

WAB12 = WA12 (I−WB22WA22)
−1

WB21

WAB21
= WB12

(I−WA22
WB22

)
−1

WA21

WAB22 = WB11 +WB12 (I−WA22WB22)
−1

WA22WB21 (45)

and

siAB =

[
siA1

WA12
(I−WB22

WA22
)
−1 (

siB2
+WB22

siA2

)
siB1

WB12 (I−WA22WB22)
−1 (

siA2
+WA22s

i
B2

)] . (46)

In the MR-FDTLM implementation, the procedure described above in (40)–
(46) is applied recursively (see [5]). In agreement with the notation introduced
in [5], Eq. (45) can be identified as the preprocessing phase, while Eq. (46) and
Eq. (43) correspond to the upward phase and the downward phase, respectively.

In the following section, we consider the computational complexity of the
MR-FDTLM implementation.
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3.2.4 Computational Complexity

It is assumed that the computational load associated with the MR-FDTLM
implementation, as well as the memory needs are due to the operations defined
in (43), (45), and (46). The following worst-case figures have been used for
estimating the computational cost:

• Sum of two general n× p–matrices: O{np};

• Product of one n× p– and one p× k–matrices: O{npk};

• Matrix inversion: O{n3}.

The computational load caused by the matrix manipulations in (45) is de-
termined as

O{2k3 − 2(NA +NB − 1)k2 + (1 + 2NANB − 2NA − 2NB +N2
A +N2

B)k +

+(N2
A +N2

B)}. (47)

Consequently, the computational load associated with (46) is estimated to
be

O{(NA +NB)k +NA +NB}. (48)

while the estimated computational cost of (43) is given by

O{−2k3 − (2 +NA +NB)k
2 + (2 +NA +NB)k}. (49)

In (47)–(49), we have utilized the fact that the scattering matrices WA and
WB are symmetrical.

A particular interest for us represent the case when the two scattering matri-
cesWA andWB are of the same size, i.e., NA = NB = N . Under this condition,
assume for simplicity that the propagation environment is a cube with M = 2L

SSCN nodes located along each edge1. Then, for each level l = 0, . . . , L − 1,
we obtain by using (47)–(49) the following estimates of the computational costs
Cp(l), Cu(l), Cd(l) associated with the preprocessing phase, the upward phase,
and the downward phase, respectively,

Cp(l) = O{186 · 63 · 23lM3}
Cu(l) = O{32 · 62 · 2lM3}
Cd(l) = O{24 · 63 · 23lM3}. (50)

The results in (50) are illustrated in Fig. 4, where the computational load
Cp(l) for the preprocessing phase at the level l is shown relative to the total
computational load for the preprocessing phase. The total computational cost
of the preprocessing phase, as well as the total computational costs for the
upward phase and the downward phase, are estimated as

• preprocessing phase: O{27 · 63 ·M6};

• upward phase: O{32 · 62 ·M4};

• downward phase: O{4 · 63 ·M6}.
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Figure 4: The computational load Cp(l) relative to the total computational load
for the preprocessing phase.

Note that about 90% of the total estimated computational cost at the prepro-
cessing phase is at the final L-th level.

Based on (43), (45), and (46), the memory needs can also be evaluated. It
follows that the total required memory is estimated to be O{72 ·62 ·M4 ·mem},
where mem is the number of bytes required to store a complex variable.

The results presented above correspond to the case when the scattering ma-
trices WA and WB that participate in the composition of scattering blocks
(see Subsection 3.2.3) are of the same size. For comparison reasons, an alter-
native scenario can be considered, when on every iteration of the MR-FDTLM
implementation (see Subsection 3.2.3), the matrix WB represent the scattering
matrix of a single SSCN node (25), i.e., NB = 12. Without going into details,
the upper bound for the total computational cost of the preprocessing phase is
estimated in this case as O{490 ·M7}.

In order to validate the advantage of using the MR-FDTLM implementation
over the more traditional time domain implementation of the TLM method, the
computational complexity of the latter has to be assessed. However, the com-
putational load of the time-domain implementation cannot be easily estimated,
due to the iterative nature of the algorithm and the dependence of the com-
putational load on the desired accuracy. Therefore, in the following we assume
that the simulation process in time domain must run for a number of itera-
tions, which is as large as the volume of the simulated environment, i.e., M3

for the scenario considered in this section (see also [24]). Under this assump-
tion, the computation load for the time domain implementation of the TLM

1For example, M = 1000 corresponds to a cube with approximately 20 m edge length for
the carrier frequency of 2.4 GHz
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method, i.e., the reference computational cost, can be estimated as O{54 ·M6}
(see Subsection 3.1.4).

It appears that the MR-FDTLM implementation can hardly be considered
as a computationally efficient algorithm compared to the time domain imple-
mentation of the TLM method. However, the computational costs associated
with the preprocessing phase, the upward phase and the downward phase shown
above represent, in a manner of speaking, the worst case. Indeed, if instead of
the naive approach to computing the matrix multiplications and inversions in
(43), (45), and (46), we employ the Strassen fast matrix multiplication/inversion
algorithms [25, 26], the following numbers for the total computational cost of
the preprocessing phase and the downward phase can be obtained2

• preprocessing phase: O{161 · 62.8 ·M5.6};

• downward phase: O{39 · 62.8 ·M5.6}.

These results are illustrated in Fig. 5, where the estimated total computa-
tional cost of the MR-FDTLM is shown relative to the reference computational
cost. As can be seen from Fig. 5, the MR-FDTLM is computationally more
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Figure 5: The the computational load of the MR-FDTLM relative to the the
reference computational load.

efficient starting from M ≃ 80.

3.3 Multi-Frequency MR-FDTLM implementation

Let us again consider the matrix Wp(f) in (37). Suppose that the signal vr(f0)
and the matrix Wp(f0) corresponding to the frequency f0 are known for each

2The total computational cost of the upward phase does not change.
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node. Then, assuming that △f is sufficiently small, we can approximate the
matrix Wp(f) at the frequency f = f0 +△f as follows

Wp(f) = Wp(f0) +
dWp(f)

df
|f=f0△f = Wp

0 +Wp
δf . (51)

It can be shown that

dWp(f)

df
= j2π△tej2πf△t

(
ej2πf△tI−Rp

)−1
Wp(f) (52)

and
Wp

δf = j2π△t△fej2πf0△t
(
ej2πf0△tI−Rp

)−1
Wp

0. (53)

The procedure developed in Section 2.3.2 can now be applied to efficiently cal-
culate the signal vr(f) at the frequency f from the known signal vr(f0).

4 Concluding Remarks

In this report, we have discussed three important contributions to adapt MR-
FDPF to OFDM/MIMO systems. The first contribution concerns the estima-
tion of a fading channel model, that was already presented in a previous pa-
per [18]. We here improve this approach by considering an eigen decomposition
of inward flows in an homogeneous receiving block. The second contribution is
the extension to MIMO simulations by considering radiation patterns in source
and reception blocks. The third contribution concerns wideband systems: MR-
FDPF was optimized to compute a frequency domain impulse response. Then
we derived a series based approximation to overcome the computational overload
associated with a multiple harmonic approach.

We have also analyzed the possibility of applying the MR-FD approach to
the TLM method in order to efficiently simulate the radio wave propagation in
3D indoor environments.

From the presented results, it follows that the 3D TLM scheme based on
the SSCNs is a suitable candidate for the MR-FDTLM implementation. In-
deed, only a few straightforward modifications of the scattering procedure im-
plemented in the original MR-FDPF algorithm are required. More importantly,
the preliminary analysis of the complexity of the MR-FDTLM implementation
indicates a potential reduction in the computational load as compared to the
more traditional time-domain realizations of the 3D TLM method.
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